Copied to
clipboard

G = C23.731C24order 128 = 27

448th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.731C24, C24.113C23, C22.3852- 1+4, C22.5042+ 1+4, C23⋊Q8.32C2, (C2×C42).739C22, (C22×C4).242C23, C23.Q8.44C2, C23.11D4.61C2, (C22×Q8).239C22, C23.78C2367C2, C24.C22.82C2, C23.67C23106C2, C23.63C23199C2, C23.81C23139C2, C23.83C23137C2, C2.120(C22.32C24), C2.C42.434C22, C2.64(C22.35C24), C2.65(C22.57C24), C2.58(C22.56C24), C2.126(C22.36C24), (C2×C4).255(C4○D4), (C2×C4⋊C4).540C22, C22.579(C2×C4○D4), (C2×C22⋊C4).349C22, SmallGroup(128,1563)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.731C24
C1C2C22C23C22×C4C22×Q8C23⋊Q8 — C23.731C24
C1C23 — C23.731C24
C1C23 — C23.731C24
C1C23 — C23.731C24

Generators and relations for C23.731C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=1, d2=c, f2=g2=a, ab=ba, ac=ca, ede=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, dg=gd, geg-1=abe >

Subgroups: 372 in 183 conjugacy classes, 84 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×Q8, C23.63C23, C24.C22, C23.67C23, C23⋊Q8, C23.78C23, C23.Q8, C23.11D4, C23.81C23, C23.83C23, C23.731C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.35C24, C22.36C24, C22.56C24, C22.57C24, C23.731C24

Character table of C23.731C24

 class 12A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q
 size 11111111844444488888888888
ρ111111111111111111111111111    trivial
ρ211111111-1-1-1-1-11111-11-111-1-11-1    linear of order 2
ρ311111111-1-1-111-1-1-1-111-1-11111-1    linear of order 2
ρ411111111111-1-1-1-1-1-1-111-11-1-111    linear of order 2
ρ511111111111-1-1-1-11-11-1-11-11-11-1    linear of order 2
ρ611111111-1-1-111-1-11-1-1-111-1-1111    linear of order 2
ρ711111111-1-1-1-1-111-111-11-1-11-111    linear of order 2
ρ8111111111111111-11-1-1-1-1-1-111-1    linear of order 2
ρ911111111-1111111-1-1-1-11111-1-1-1    linear of order 2
ρ10111111111-1-1-1-111-1-11-1-111-11-11    linear of order 2
ρ11111111111-1-111-1-111-1-1-1-111-1-11    linear of order 2
ρ1211111111-111-1-1-1-1111-11-11-11-1-1    linear of order 2
ρ1311111111-111-1-1-1-1-11-11-11-111-11    linear of order 2
ρ14111111111-1-111-1-1-111111-1-1-1-1-1    linear of order 2
ρ15111111111-1-1-1-1111-1-111-1-111-1-1    linear of order 2
ρ1611111111-11111111-111-1-1-1-1-1-11    linear of order 2
ρ172-22-22-22-202i-2i2-22i-2i00000000000    complex lifted from C4○D4
ρ182-22-22-22-20-2i2i2-2-2i2i00000000000    complex lifted from C4○D4
ρ192-22-22-22-20-2i2i-222i-2i00000000000    complex lifted from C4○D4
ρ202-22-22-22-202i-2i-22-2i2i00000000000    complex lifted from C4○D4
ρ214-4-4-444-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ2244-444-4-4-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ23444-4-44-4-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ244-444-4-4-44000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ254-4-44-444-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2644-4-4-4-444000000000000000000    symplectic lifted from 2- 1+4, Schur index 2

Smallest permutation representation of C23.731C24
On 64 points
Generators in S64
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(2 10)(4 12)(5 64)(6 35)(7 62)(8 33)(13 55)(14 28)(15 53)(16 26)(17 19)(18 48)(20 46)(22 50)(24 52)(25 43)(27 41)(29 31)(30 60)(32 58)(34 38)(36 40)(37 63)(39 61)(42 56)(44 54)(45 47)(57 59)
(1 17 9 45)(2 32 10 60)(3 19 11 47)(4 30 12 58)(5 54 38 26)(6 41 39 13)(7 56 40 28)(8 43 37 15)(14 64 42 34)(16 62 44 36)(18 24 46 52)(20 22 48 50)(21 57 49 29)(23 59 51 31)(25 61 53 35)(27 63 55 33)
(1 13 9 41)(2 14 10 42)(3 15 11 43)(4 16 12 44)(5 20 38 48)(6 17 39 45)(7 18 40 46)(8 19 37 47)(21 53 49 25)(22 54 50 26)(23 55 51 27)(24 56 52 28)(29 35 57 61)(30 36 58 62)(31 33 59 63)(32 34 60 64)

G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,10)(4,12)(5,64)(6,35)(7,62)(8,33)(13,55)(14,28)(15,53)(16,26)(17,19)(18,48)(20,46)(22,50)(24,52)(25,43)(27,41)(29,31)(30,60)(32,58)(34,38)(36,40)(37,63)(39,61)(42,56)(44,54)(45,47)(57,59), (1,17,9,45)(2,32,10,60)(3,19,11,47)(4,30,12,58)(5,54,38,26)(6,41,39,13)(7,56,40,28)(8,43,37,15)(14,64,42,34)(16,62,44,36)(18,24,46,52)(20,22,48,50)(21,57,49,29)(23,59,51,31)(25,61,53,35)(27,63,55,33), (1,13,9,41)(2,14,10,42)(3,15,11,43)(4,16,12,44)(5,20,38,48)(6,17,39,45)(7,18,40,46)(8,19,37,47)(21,53,49,25)(22,54,50,26)(23,55,51,27)(24,56,52,28)(29,35,57,61)(30,36,58,62)(31,33,59,63)(32,34,60,64)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,10)(4,12)(5,64)(6,35)(7,62)(8,33)(13,55)(14,28)(15,53)(16,26)(17,19)(18,48)(20,46)(22,50)(24,52)(25,43)(27,41)(29,31)(30,60)(32,58)(34,38)(36,40)(37,63)(39,61)(42,56)(44,54)(45,47)(57,59), (1,17,9,45)(2,32,10,60)(3,19,11,47)(4,30,12,58)(5,54,38,26)(6,41,39,13)(7,56,40,28)(8,43,37,15)(14,64,42,34)(16,62,44,36)(18,24,46,52)(20,22,48,50)(21,57,49,29)(23,59,51,31)(25,61,53,35)(27,63,55,33), (1,13,9,41)(2,14,10,42)(3,15,11,43)(4,16,12,44)(5,20,38,48)(6,17,39,45)(7,18,40,46)(8,19,37,47)(21,53,49,25)(22,54,50,26)(23,55,51,27)(24,56,52,28)(29,35,57,61)(30,36,58,62)(31,33,59,63)(32,34,60,64) );

G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(2,10),(4,12),(5,64),(6,35),(7,62),(8,33),(13,55),(14,28),(15,53),(16,26),(17,19),(18,48),(20,46),(22,50),(24,52),(25,43),(27,41),(29,31),(30,60),(32,58),(34,38),(36,40),(37,63),(39,61),(42,56),(44,54),(45,47),(57,59)], [(1,17,9,45),(2,32,10,60),(3,19,11,47),(4,30,12,58),(5,54,38,26),(6,41,39,13),(7,56,40,28),(8,43,37,15),(14,64,42,34),(16,62,44,36),(18,24,46,52),(20,22,48,50),(21,57,49,29),(23,59,51,31),(25,61,53,35),(27,63,55,33)], [(1,13,9,41),(2,14,10,42),(3,15,11,43),(4,16,12,44),(5,20,38,48),(6,17,39,45),(7,18,40,46),(8,19,37,47),(21,53,49,25),(22,54,50,26),(23,55,51,27),(24,56,52,28),(29,35,57,61),(30,36,58,62),(31,33,59,63),(32,34,60,64)]])

Matrix representation of C23.731C24 in GL10(𝔽5)

1000000000
0100000000
0040000000
0004000000
0000400000
0000040000
0000004000
0000000400
0000000040
0000000004
,
1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
4000000000
0400000000
0040000000
0004000000
0000400000
0000040000
0000004000
0000000400
0000000040
0000000004
,
2000000000
0200000000
0000100000
0000010000
0040000000
0004000000
0000000110
0000004004
0000000001
0000000040
,
1000000000
4400000000
0010000000
0014000000
0000400000
0000410000
0000001000
0000000100
0000000340
0000003004
,
3100000000
2200000000
0034000000
0002000000
0000340000
0000020000
0000000330
0000003003
0000000002
0000000020
,
1000000000
0100000000
0013000000
0014000000
0000130000
0000140000
0000000100
0000004000
0000000004
0000000010

G:=sub<GL(10,GF(5))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,4,1,0],[1,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[3,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0,0,0,0,0,3,2,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0] >;

C23.731C24 in GAP, Magma, Sage, TeX

C_2^3._{731}C_2^4
% in TeX

G:=Group("C2^3.731C2^4");
// GroupNames label

G:=SmallGroup(128,1563);
// by ID

G=gap.SmallGroup(128,1563);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,723,100,794,185,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=1,d^2=c,f^2=g^2=a,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,g*e*g^-1=a*b*e>;
// generators/relations

Export

Character table of C23.731C24 in TeX

׿
×
𝔽